Face Alignment by Local Deep Descriptor Regression
نویسندگان
چکیده
We present an algorithm for extracting key-point descriptors using deep convolutional neural networks (CNN). Unlike many existing deep CNNs, our model computes local features around a given point in an image. We also present a face alignment algorithm based on regression using these local descriptors. The proposed method called Local Deep Descriptor Regression (LDDR) is able to localize face landmarks of varying sizes, poses and occlusions with high accuracy. Deep Descriptors presented in this paper are able to uniquely and efficiently describe every pixel in the image and therefore can potentially replace traditional descriptors such as SIFT and HOG. Extensive evaluations on five publicly available unconstrained face alignment datasets show that our deep descriptor network is able to capture strong local features around a given landmark and performs significantly better than many competitive and state-of-the-art face alignment algorithms.
منابع مشابه
Deep Regression for Face Alignment
In this paper, we present a deep regression approach for face alignment. The deep architecture consists of a global layer and multi-stage local layers. We apply the back-propagation algorithm with the dropout strategy to jointly optimize the regression parameters. We show that the resulting deep regressor gradually and evenly approaches the true facial landmarks stage by stage, avoiding the ten...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملA novel illumination-robust local descriptor based on sparse linear regression
a r t i c l e i n f o a b s t r a c t Robust face recognition under uncontrolled illumination conditions is an important problem for real face recognition systems. In this paper, we introduce a novel illumination-robust local descriptor named Sparse Linear Regression Binary (SLRB) descriptor. The SLRB descriptor is a bit string by binarizing the sparse linear regression coefficients in a local ...
متن کاملSoft Biometrics: Gender Recognition from Unconstrained Face Images using Local Feature Descriptor
Gender recognition from unconstrained face images is a challenging task due to the high degree of misalignment, pose, expression, and illumination variation. In previous works, the recognition of gender from unconstrained face images is approached by utilizing image alignment, exploiting multiple samples per individual to improve the learning ability of the classifi er, or learning gender based...
متن کاملRobust local features for remote face recognition
Article history: Received 25 October 2015 Received in revised form 28 March 2017 Accepted 13 May 2017 Available online 31 May 2017 In this paper, we propose a robust local descriptor for face recognition. It consists of two components, one based on a shearlet-decomposition and the other on local binary pattern (LBP). Shearlets can completely analyze the singular structures of piecewise smooth i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1601.07950 شماره
صفحات -
تاریخ انتشار 2016